

Tailoring Integrated Layered- and Spinel Electrode Structures for High Capacity Lithium-Ion Cells

Principal Investigators: Michael Thackeray and Jason Croy
Chemical Sciences and Engineering Division
Argonne National Laboratory

Annual Merit Review
DOE Vehicle Technologies Program
Washington, DC
5-9 June, 2017

ES049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

Start date: FY16

End date: FY18

Percent complete: 50%

Budget

- Total project funding: 100% DOE
- FY16 Funding:
 - Composite Electrodes: \$500K
 - Spinel Components: \$500K

Overview

Barriers

- Low energy density
- Cost
- Abuse tolerance limitations

Partners

- Lead PI: Michael Thackeray, Co-PI: Jason Croy
- Collaborators:
 - CSE, Argonne: Eungje Lee, Joong Sun Park,
 Arturo Gutierrez, Bryan Yonemoto, Meinan He
 Roy Benedek, Fulya Dogan (NMR)
 - APS, Argonne: Mali Balasubramanian (XAS)
 - Northwestern University, NUANCE:
 Vinayak Dravid, Jinsong Wu (TEM)
 - PNNL: Chongmin Wang (TEM)
 - ORNL: Harry Meyer (XPS)
 - Industry: Argonne licensees and collaborators

Objectives

- Design and characterize high capacity, high-power, safe and low cost cathodes for PHEVs and EVs
 - Improve the structural design, composition and electrochemical performance of Mn-rich cathodes to make them competitive with Ni-rich cathode compositions, e.g., 622
 - Design and engineer stable electrode surfaces to improve capacity and cycle life when charged to high potentials

Milestones (FY16)

- Optimize the composition, capacity and cycling stability of structurally-integrated 'layered-layered' and 'layered-layered-spinel' cathode materials. Target capacity = 200 mAh/g for baseline electrode achieved. Project on-going.
- Scale up the most promising materials to batch sizes required for evaluation by industry (10g-100g-1kg). Achieved. Project on-going.
- Synthesize and determine the electrochemical properties of unique surface architectures that enable >200 mAh/g at a >1C rate. **Project on-going.**
- Synthesize and optimize spinel compositions and structures with a focus on Co-based systems for use in structurally-integrated 'layered-spinel' systems. Project on-going.

Approach

- Exploit the concept and optimize the performance of structurallyintegrated ('composite') electrode structures with a focus on 'layered-layered-spinel' materials.
- Design effective surface structures to protect the underlying metal oxide particles from the electrolyte and to improve and maintain their stability and rate capability when charged to high potentials (4.5-4.6 V).

Motivation for R&D Approach

Major Materials Challenges for Li-ion Batteries

- Increase the energy density of cells both volumetric and gravimetric for portable/mobile applications
 - Increase cell voltage
 - Increase electrode capacity ⇒ Mn rather than Co-, Ni-rich oxides
- Reduce cost and toxicity ⇒ Mn-rich rather than Co, Ni-rich cathodes
- Reduce/Eliminate Safety Hazard:
 - Lithium Batteries Could Spark 'Catastrophic' Plane Fires, FAA Warns (2016)
 - Control electrochemical and chemical reactions to eliminate the risks of thermal runaway
 - ⇒ Mn-rich rather than Co, Ni-rich oxide cathodes
 - ⇒ Non-flammable electrolytes
 - ⇒ Voltage control

Lithium- and Manganese-Rich Composite Electrodes

- Structure integrated nanodomains yield complex structures
- Surface stabilization electrochemical "activation" leads to irreversible structural changes, surface damage, voltage fade, and hysteresis
- Hysteresis energy inefficiency
- Voltage Fade continuous decrease in energy output with cycling
 compromises battery management

Stabilization of xLi₂MnO₃•(1-x)LiMO₂ Electrodes

- Extend concept of integrated structures to 'layered-layered-spinel' (LLS) systems
- Embed TM metal pillars (spinel component) to stabilize 'layered-layered' structures

- Compatibility of cubic-close-packed planes in layered Li₂MnO₃ (001) and spinel Li₄M₅O₁₂ (111) allows structural integration of the two components
- Nano-composite structure

The Li₂MnO₃-LiMO₂-LiM'₂O₄ System

Conceptual Design Space of 'Layered-Layered-Spinel' (LLS) Electrodes

Wide Li-M-O compositional and phase space to exploit integrated layered and spinel structures

Use relatively small amounts of Li₂MnO₃ and LiM'₂O₄ spinel as stabilizers

Spinel domains created by reducing the Li content in 'LL' structures

At what Li concentration do TMs start migrating to the Li layer?

Highly complex structural arrangements

Reducing Li Content in Li₂MnO₃ and LiMO₂

Li-deficient $Li_{2-x}MnO_{\delta}$ transforms to spinel ($Li_{1+x}Mn_{2-x}O_{4}$) on heating (~850 °C)

- Delithiated Li_{1-x}MO₂ structures, e.g., M=Ni, V, Mn also transform on heating to spinel:
 - 1) M. Thomas, W. I. F. David, J. B. Goodenough, P. Groves,
 - Mater. Res. Bull., 20, 187-195 (1985)
 - 3) R. J. Gummow, D. C. Liles and M. M. Thackeray, Mater. Res. Bull., 28, 1249 (1993).

(a) x = 0

(b) x = 0.25

(c) x = 0.5

(d) x = 0.75

(e) x = 1.0

(f) x = 1.5

(333)/

(511)

58

HRTEM of 'Li_{2-x}MnO_{3- δ}' (x=1)

- Structure characterized by faulted layered Li₂MnO₃ regions, and LiMn₂O₄ spinel regions that exist predominantly at the surface
- Distorted intergrown regions at the interface mismatch in lattice parameters?

The Effect of Lithium Content in 'Baseline' NMC ~'532'

 $0.25 \text{Li}_{2-x'} \text{MnO}_{3-\delta'} = 0.75 \text{LiMn}_{0.375} \text{Ni}_{0.375} \text{Co}_{0.25} \text{O}_{2}' \text{ i.e., Li}_{x} \text{Mn}_{0.53} \text{Ni}_{0.28} \text{Co}_{0.19} \text{O}_{\delta} \text{ (Mn:Ni } \approx 2:1)$

- Maximum capacity at ~6% 'targeted' spinel content
- 1st-cycle efficiency increases with increasing spinel content
- Rate capability increases spinel-stabilized surface?

Cycling Stability and Rate Performance (4.45-2V)

MERF Facility - $\text{Li}_{x}\text{Mn}_{0.53}\text{Ni}_{0.28}\text{Co}_{0.19}\text{O}_{\delta}$

- Electrodes containing 5-10% spinel (targeted amount) show significantly better capacity and rate capability relative to those with 2% and 15%
- Stable cycling
- Powders with targeted 6% spinel scaled to 800g production

Untreated and Surface-treated LL and LLS Electrodes

(derived from 0.25Li₂MnO₃•0.75LiMn_{0.375}Ni_{0.375}Co_{0.25}O₂; Mn:Ni ~2:1)

US Patent Application Filed

Cycling protocol in Li half cells: (15 mA/g charge and discharge)

(a)

- One activation cycle: 4.60 2.0 V
- Subsequent cycles: 4.45 2.5 V
- 210-220 mAh/g

(b)

- One activation cycle: 4.60 2.0 V
- Subsequent cycles: 4.60 2.5 V
- 220-230 mAh/g

Untreated and Surface-treated LL and LLS Electrodes

(derived from 0.25Li₂MnO₃•0.75LiMn_{0.375}Ni_{0.375}Co_{0.25}O₂; Mn:Ni ~ 2:1)

Untreated LLS

Surface treated LLS

- Steady cycling after activation (voltage fade suppressed)
- 'Approaching end-of-life' indicator at ~3.5 V in LLS electrodes

Untreated and Surface-treated LL and LLS Electrodes

(derived from 0.25Li₂MnO₃•0.75LiMn_{0.375}Ni_{0.375}Co_{0.25}O₂; Mn:Ni ~2:1)

Predominant Ni reduction peak at 3.7 V, less hysteresis than in 0.5Li₂MnO₃•0.5LiMn_{0.5}Ni_{0.5}O₂ electrodes

LLS Electrodes with Lithium-Cobalt-Nickel-Oxide Spinels?

Embedding a lithiated cobalt-rich spinel rather than a manganese-based spinel as a stabilizer for high capacity $xLi_2MnO_3 \cdot (1-x)LiMO_2$ electrodes seems attractive:

- Lithiated spinels $Li_2[Co_{2-2x}Ni_{2x}]O_4$, like $xLi_2MnO_3 \bullet (1-x)LiMO_2$ materials have close-packed structures with a rock salt stoichiometry, making them compositionally, and potentially structurally, compatible with one another
- Relative to manganese and nickel, cobalt has a lower propensity to migrate in a cubic-close-packed oxygen lattice, thereby offering the possibility of mitigating voltage fade
- Lithium extraction from a lithiated cobalt-rich spinel component, $\text{Li}_{2-x}\text{Co}_{2-2y}\text{Ni}_{2y}\text{O}_4$ (0≤x≤1), occurs at a significantly higher potential (~3.6 V) than a lithiated manganese-oxide spinel analogue, $\text{Li}_{2-x}\text{Mn}_2\text{O}_4$ (~2.9 V)

The Layered-Spinel LiCoO₂ Structural Anomaly

The X-ray diffraction pattern of layered-LiCoO₂ with an ideal cubic-close-packed oxygen array with R3-m symmetry (c/a = 4.90) is identical to that of a lithiated spinel structure, Li₂[Co₂]O₄ with Fd-3m symmetry!

Rietveld Analyses of LT-LiCo_{0.9}Ni_{0.1}O₂ - synchrotron XRD data Spinel (Fd-3m) and Layered (R-3m) symmetry

Space group		Fd-3m							
Lattice constants (Å)		a = 8.007(4)							
$R_p / R_{wp} / R_{exp}$ (%)		6.85 / 9.28 / 4.81							
Goodness-of-fit		1.93							
Atom	Site	X	y	Z	Occ.	B_{eq}			
Lil	16c	0	0	0	$0.97(6)^{\dagger}$	$0.38(6)^{\ddagger}$			
Li2	16d	0.5	0.5	0.5	0.02(4)	$0.38(6)^{\ddagger}$			
Col	16d	0.5	0.5	0.5	0.97(6) [†]	$0.38(6)^{\ddagger}$			
Co2	16c	0	0	0	$0.02(4)^{\dagger}$	$0.38(6)^{\ddagger}$			
О	32e	0.259(7)	0.259(7)	0.259(7)	1	0.47(3)			

[†]Occupancies of Li and Co were refined with a constraint that would satisfy the anti-site exchange condition.

Space group		R-3m							
Lattice constants (Å)		a = 2.830(7), $c = 13.872(3)$, $c/a = 4.90$							
$R_p / R_{wp} / R_{exp}$ (%)		6.83 / 9.11 / 4.81							
Goodness-of-fit		1.89							
Atom	Site	X	y	z	Occ.	B_{eq}			
Lil	3a	0	0	0	0.98(3)	$0.33(1)^{\ddagger}$			
Li2	3b	0	0	0.5	$0.01(7)^{\dagger}$	$0.33(1)^{\ddagger}$			
Co1	3b	0	0	0.5	0.98(3) [†]	$0.33(1)^{\ddagger}$			
Co2	3a	0	0	0	0.01(7) [†]	$0.33(1)^{\ddagger}$			
О	6c	0	0	0.240(3)	1	0.37(7)			

[†]Occupancies of Li and Co were refined with a constraint that would satisfy the anti-site exchange condition.

Lithiated spinel and layered structures are indistinguishable within experimental error

[‡]B_{eq} of Li and Co was constrained to have the same value.

 $^{{}^{\}ddagger}B_{eq}$ of Li and Co was constrained to have the same value.

Synchrotron XRD patterns of LT-LiCo_{1-x}Ni_xO₂ (x=0 & 0.1)

- LT-LiCoO₂ (x=0, 400 °C) unequivocally contains lithiated spinel and layered components (peak splitting/broadening)
- LT-LiCo_{0.9}Ni_{0.1}O₂ (x=0.1, 400 °C) contains predominantly lithiated spinel; slight peak asymmetry suggests a small deviation from an ideal spinel distribution of cations
- Further analysis of LT-LiCoO₂ reported in ES235 (Characterization/modeling project Croy)

Electrochemical Profiles of Li/LT-LiCo_{1-x}Ni_xO₂ Cells

(Synthesis temperature: 400 °C)

 $LT-LiCo_{0.9}Ni_{0.1}O_2$ 4.0 Voltage (V) 3.5 0.005 3.0 Ø 0.000 -0.005 2.5 3.6 0 20 80 140 60 100 160 Specific capacity (mAh/g)

- Electrochemical profile shows both layered behavior (~3.9 V) and lithiated spinel behavior (~3.5 V)
- Spinel cycling more stable than layered cycling ⇒ layered structure is metastable, not ideally configured
- 10% Ni substitution promotes spinel formation at 400 °C
- dQ/dV plot clean ⇒ cubic spinel and 'cubic-layered' structures
- Irreversible reaction at ~4 V on initial charge ⇒ unstable layered component?
- Efforts underway to integrate Co-based spinels into layered NMC structures
- Invention Report/US Patent Application Filed on Further Advances

Future Work - FY2017/FY2018

- Good momentum has been gathered and progress made in advancing the performance of Li- and Mn-rich 'layered-layered-spinel' (LLS) cathode materials and stabilizing their surfaces through compositional control.
- High-potential (~3.5 V), lithiated Co- and Ni-based spinels have been evaluated as potential components for LLS electrode systems this research has provided an encouraging new direction for this sub-project (not yet publicly disclosed).
- For the remainder of FY2017 and in FY2018, efforts will focus on optimizing the capacity, rate and electrochemical stability of LLS electrode materials.
- Collaborative interactions with industry to evaluate ANL's baseline LLS electrodes and surface-treated materials have been initiated.
- Complementary studies, both experimental and theoretical, to characterize bulk LLS and surface structures will be undertaken to gather information about the reasons for their electrochemical behavior (ES235)

Note: Any proposed future work is subject to change based on funding levels

Summary

- Recent trends:
 - Nickel-rich cathodes (NCA, 811, 622) are in vogue
 - Increasing the upper voltage cutoff (~4.4 V)
 - Safety concern (need non-flammable electrolytes)
- Layered-spinel composite structures hold promise to enhance the capacity and cycling stability of xLi₂MnO₃•(1-x)LiMO₂ (NMC) electrodes
 - Mn-rich (lower cost and toxicity)
 - Stabilizing Li in the TM layers (Li₂MnO₃)
 - Stabilizing TMs in the Li layers
 - Protective surface layers
 - Safer than Co-rich and Ni-rich electrodes

Acknowledgments

Support for this work from the BMR Program, Office of Vehicle Technologies, DOE-EERE, is gratefully acknowledged — Tien Duong, David Howell

